China wholesaler China Auto Parts 3103011r004/2202020030-B/10038148 Axle Front and Rear Wheel Hub for JAC and CZPT Truck axle extender

Product Description

Product Description

product name wheel hub
Product number 31571R004/2257120030-B/10038148
Specification standard
Material Metal
performance hight
Application classification axle system
Applicable models JAC/Auman/SAIC Xihu (West Lake) Dis.n
Origin China
Package Carton
Transportation method According to customer requirements

Detailed Photos

Bulletin Board

Our company operates a full range of accessories for buses and trucks of multiple brands, such as Yutong, Zhongtong, Higer, King Long buses, JAC, Auman, SAIC Xihu (West Lake) Dis.n, and ZheJiang Automobile trucks. If you don’t find the product you need, please send me an email and I will send you the exact information and price based on your description or item number.

 

Shipping scenario

Our Advantages

 

Company Profile

Our company offers variety of products which can meet your multifarious demands. We adhere to the management principles of “quality first, customer first and credit-based” since the establishment of the company and always do our best to satisfy potential needs of our customers. Our company is sincerely willing to cooperate with enterprises from all over the world in order to realize a CZPT situation since the trend of economic globalization has developed with anirresistible force.

FAQ

Q1. How do you correctly identify the products you need?
A:Supply  part number,we can check directly.
Engine and gearbox  parts;if you don’t know  part code,try to found engine or gear  model and number.

Q2. What are your packaging conditions?
A: Generally, the goods are packed in neutral white boxes or brown cartons.
If you have a legally registered patent, the goods can be packed in your branded boxes after obtaining your authorization letter.

Q3. What are your payment terms?
A: T/T 30% as deposit, 70% before delivery. Photos of the product and packaging will be shown to you before the balance is paid.

Q4 How is your delivery time?
A: Generally, it takes 30 days after receiving the advance payment.
The specific delivery time depends on the items and quantity of the order.

Q5. Can you produce according to samples?
A: Yes, it can be developed according to your samples or technical drawings.

Q6. Do you test all goods before delivery?
A: Yes, 100% tested before delivery.

Q7: How do you make our business long-term and good relationship?
A: 1. Good quality and competitive prices ensure our customers benefit;
   2.We respect every customer as our friend, we sincerely do business and make friends with them, no matter where they come from.

Please send me an email and give me a chance to serve you! Thanks!
Have a good day!

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Standard After-Sales
Warranty: Standard
Material: Steel
Type: Rim
Drive Wheel: RWD
Wheel Hub Diameter: 21-24"
Samples:
US$ 60/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle hub

Are there differences between front and rear axle hubs in terms of design and function?

Yes, there are differences between front and rear axle hubs in terms of design and function. Here’s a detailed explanation of these differences:

1. Design:

The design of front and rear axle hubs can vary based on the specific requirements of each axle position.

Front Axle Hubs: Front axle hubs are typically more complex in design compared to rear axle hubs. This is because front axle hubs are often responsible for connecting the wheels to the steering system and accommodating the front-wheel drive components. Front axle hubs may have provisions for attaching CV (constant velocity) joints, which are necessary for transmitting power from the engine to the front wheels in front-wheel drive or all-wheel drive vehicles. The design of front axle hubs may also incorporate features for connecting the brake rotor, allowing for the integration of the braking system.

Rear Axle Hubs: Rear axle hubs generally have a simpler design compared to front axle hubs. They are primarily responsible for connecting the wheels to the rear axle shafts and supporting the wheel bearings. Rear axle hubs may not require the same level of complexity as front axle hubs since they do not need to accommodate steering components or transmit power from the engine. However, rear axle hubs still play a critical role in supporting the weight of the vehicle, transmitting driving forces, and integrating with the brake system.

2. Function:

The function of front and rear axle hubs differs based on the specific demands placed on each axle position.

Front Axle Hubs: Front axle hubs have the following primary functions:

  • Connect the wheel to the steering system, allowing for controlled steering and maneuverability.
  • Support the wheel bearings to facilitate smooth wheel rotation and weight distribution.
  • Integrate with the front-wheel drive components, such as CV joints, to transmit power from the engine to the front wheels.
  • Provide a mounting point for the brake rotor or drum, allowing for the integration of the braking system.

Rear Axle Hubs: Rear axle hubs have the following primary functions:

  • Connect the wheel to the rear axle shaft, facilitating power transmission and driving forces.
  • Support the wheel bearings to enable smooth wheel rotation and weight distribution.
  • Integrate with the brake system, providing a mounting point for the brake rotor or drum for braking performance.

3. Load Distribution:

Front and rear axle hubs also differ in terms of load distribution.

Front Axle Hubs: Front axle hubs bear the weight of the engine, transmission, and other front-end components. They also handle a significant portion of the vehicle’s braking forces during deceleration. As a result, front axle hubs need to be designed to handle higher loads and provide sufficient strength and durability.

Rear Axle Hubs: Rear axle hubs primarily bear the weight of the vehicle’s rear end and support the differential and rear axle shafts. The braking forces on the rear axle hubs are typically lower compared to the front axle hubs. However, they still need to be robust enough to handle the forces generated during acceleration, deceleration, and cornering.

In summary, there are differences between front and rear axle hubs in terms of design and function. Front axle hubs are typically more complex and accommodate steering components and front-wheel drive systems, while rear axle hubs have a simpler design focused on supporting the rear axle and integrating with the brake system. Understanding these differences is important for proper maintenance and repair of the axle hubs in a vehicle.

axle hub

What role does the ABS sensor play in the context of an axle hub assembly?

The ABS (Anti-lock Braking System) sensor plays a crucial role in the context of an axle hub assembly. It is an integral component of the braking system and is responsible for monitoring the speed and rotational behavior of the wheels. Here’s a detailed explanation of the role of the ABS sensor in the context of an axle hub assembly:

  • Wheel speed monitoring: The primary function of the ABS sensor is to monitor the rotational speed of the wheels. It does this by detecting the teeth or magnetic patterns on a tone ring or reluctor ring mounted on the axle hub or adjacent to the wheel hub. By continuously measuring the speed of each wheel, the ABS sensor provides crucial data to the vehicle’s ABS system.
  • Anti-lock Braking System (ABS): The ABS system utilizes the data provided by the ABS sensors to determine if any wheel is about to lock up during braking. If a wheel is on the verge of locking up, the ABS system modulates the braking pressure to that wheel. This prevents the wheel from fully locking up, allowing the driver to maintain control of the vehicle and reducing the risk of skidding or loss of steering control.
  • Traction control: In addition to aiding the ABS system, the ABS sensors also play a role in the vehicle’s traction control system. By continuously monitoring the rotational speed of the wheels, the ABS sensors assist in detecting any wheel slippage or loss of traction. When a wheel slips, the traction control system can adjust the engine power output or apply brake pressure to the specific wheel to regain traction and maintain stability.
  • Stability control: Some modern vehicles incorporate stability control systems that rely on the ABS sensors to monitor the rotational behavior of the wheels. By comparing the speeds of individual wheels, the stability control system can detect and mitigate any potential loss of vehicle stability. This may involve applying brakes to specific wheels or adjusting engine power to help the driver maintain control in challenging driving conditions or during evasive maneuvers.
  • Diagnostic capabilities: The ABS sensors also provide diagnostic capabilities for the vehicle’s onboard diagnostic system. In the event of a fault or malfunction within the ABS system, the ABS sensors can transmit error codes to the vehicle’s computer, which can then be retrieved using a diagnostic scanner. This aids in the identification and troubleshooting of ABS-related issues.

The ABS sensor is typically mounted near the axle hub, with its sensor tip in close proximity to the tone ring or reluctor ring. It generates electrical signals based on the detected rotational patterns, which are then transmitted to the vehicle’s ABS control module for processing and action.

In summary, the ABS sensor plays a vital role in the context of an axle hub assembly. It monitors the rotational speed of the wheels, providing essential data for the ABS system, traction control, and stability control. The ABS sensor helps prevent wheel lockup during braking, enhances traction in slippery conditions, aids in maintaining vehicle stability, and contributes to the diagnostic capabilities of the ABS system.

axle hub

How do changes in wheel offset affect the angles and performance of axle hubs?

Changes in wheel offset can have a significant impact on the angles and performance of axle hubs. Here’s a detailed explanation:

Wheel offset refers to the distance between the centerline of the wheel and the mounting surface. It determines how far the wheel and tire assembly will be positioned in relation to the axle hub. There are three types of wheel offsets: positive offset, zero offset, and negative offset.

Here’s how changes in wheel offset can affect the angles and performance of axle hubs:

  • Camber Angle: Camber angle refers to the inward or outward tilt of the wheel when viewed from the front of the vehicle. Changes in wheel offset can impact the camber angle. Increasing positive offset or reducing negative offset typically results in more positive camber, while increasing negative offset or reducing positive offset leads to more negative camber. Improper camber angle can cause uneven tire wear, reduced traction, and handling issues.
  • Track Width: Wheel offset affects the track width, which is the distance between the centerlines of the left and right wheels. Wider track width can improve stability and cornering performance. Increasing positive offset or reducing negative offset generally widens the track width, while increasing negative offset or reducing positive offset narrows it.
  • Steering Geometry: Changes in wheel offset also impact the steering geometry of the vehicle. Altering the offset can affect the scrub radius, which is the distance between the tire contact patch and the steering axis. Changes in scrub radius can influence steering effort, feedback, and stability. It’s important to maintain the appropriate scrub radius for optimal handling and performance.
  • Wheel Bearing Load: Wheel offset affects the load applied to the wheel bearings. Increasing positive offset or reducing negative offset generally increases the load on the inner wheel bearing, while increasing negative offset or reducing positive offset increases the load on the outer wheel bearing. Proper wheel bearing load is crucial for their longevity and performance.
  • Clearance and Interference: Changes in wheel offset can also impact the clearance between the wheel and suspension components or bodywork. Insufficient clearance due to excessive positive offset or inadequate clearance due to excessive negative offset can lead to rubbing, interference, or potential damage to the axle hub, suspension parts, or bodywork.

It’s important to note that any changes in wheel offset should be done within the manufacturer’s recommended specifications or in consultation with knowledgeable professionals. Deviating from the recommended wheel offset can lead to adverse effects on the axle hub angles and performance, as well as other aspects of the vehicle’s handling and safety.

When modifying wheel offset, it is crucial to consider the overall impact on the vehicle’s suspension geometry, clearance, and alignment. It may be necessary to make corresponding adjustments to maintain proper alignment angles, such as camber, toe, and caster, to ensure optimal tire wear, handling, and performance.

In summary, changes in wheel offset can have a significant impact on the angles and performance of axle hubs. They can affect camber angles, track width, steering geometry, wheel bearing load, and clearance. It is important to adhere to manufacturer’s specifications and consult with knowledgeable professionals when considering changes in wheel offset to ensure proper alignment, optimal performance, and safe operation of the vehicle.

China wholesaler China Auto Parts 3103011r004/2202020030-B/10038148 Axle Front and Rear Wheel Hub for JAC and CZPT Truck   axle extenderChina wholesaler China Auto Parts 3103011r004/2202020030-B/10038148 Axle Front and Rear Wheel Hub for JAC and CZPT Truck   axle extender
editor by CX 2024-04-16