China supplier High Temperature Oil Resistant Fluorine Rubber Skeleton Seal Seals with Great quality

Product Description

High temperature oil resistant fluorine rubber skeleton seal seals

1. More than 35 years’ professional experience in rubber sealing industry;
2. Our NBR raw material is imported from JSR, Silicone is from German WACKER, and also Viton is USA DUPONT;
3. Top quality custom rubber products that can completely meet your needs;
4. Fast production & i20n-time delivery that never delay your project and usage;
5. One-stop custom service and value-added service to save your time and cost;
6. OEM/ODM Services are available. We can design and produce various Non-standard Rubber Parts according to your PDF,3D or STEP drawing files;
7. All of rubber finished products are 100% inspected before shipment;
8. Have established rubber property test lab and have tensile strength machine, thermostatic oil tank, aging test machine, compression set test machine, secondary cure oven, Density test machine and so on;
9. As the gold & stable supplier for many domestic & foreign famous large enterprises;
10. Strong and perfect packing for each items:
    —For air delivery, we use middle strong cartons and pack by packing belt;
    —For sea delivery, we pack all the cartons by strong pallet to make sure our customers to receive the goods in perfect packing condition.

Detailed Images

Product Overviews

Item name: Oil Seal
Meterial: NBR, FKM, HNBR , Viton,Silicon ,Q, EPDM,  ACM,  etc
Application: Engine, Transmission, Rear Axle
Speed: Speed Mechanical Seal
lip: Double lips and single lip are available
Shape: O Type
Color: Black, brown or as you required
Pressure: Pressure type
Working Medium: Hydraulic Oil, Water and Dust
Payment terms: L/C or T/T /Western Union
Trademark: ODM, OEM
Performance: High temperature resistance,Good oil resistance
Standard: Nonstandard / Standard
Hardness: 60-90
Transport package: Carton or as Your Required
Factory visit: Available
Company Type Manufacturer/Factory & Trading Company
Origin: China(mainland)
Hscode: 4016931000
Supply 500000 per/month

Oil Seal Brief Introduction
Oil seal is also known as rotary shaft seal. They are often called grease, fluid or dirt seals. Oil seal is an integral part in any rotating and moving part assembly. They close spaces between stationary and moving components in mechanical equipment.  An oil seal normally consists of 3 basic components: The Sealing Element (the nitrile rubber part), the Metal Case, and the Spring. It is a widely used sealing component. 
Temperature: -50°C -300°C Depending On Rubber Material
Pressure: Up to 0.03 MPa
Reciprocation Speed: 0-20m/S
Medias: mineral oils, water, lubricating grease
Specification: 6-13000mm

Advantages
1.Good abrasion resistance property;
2.Good high temperature resistance and low temperature resistance property;
3.Good CZPT corrosion resistance property and climate adaptability;
4.High abrasion resistance property;
5.Low abrasion resistance property;
6.Low permanent compression deformation feature;
7. Good resilience.

Production Flow

Regular Sizes

ID*OD*H mm Type ID*OD*H mm Type ID*OD*H mm Type ID*OD*H mm Type
6x22x8 TC 12x32x10 TC 17x30x8 TC 20x40x8 TC
8x14x4 SC 12x32x7 TC 17x30x10 TC 20x42x7 TC
8x16x4 TC 13x22x7 TC 17x30x10 TC 20x42x7 TC
8x16x5 TC 13x24x7 SC 17x35x10 TC 20x42x10 TC
8x16x7 SC 14x24x7 SC 17x35x10 SC 20x45x10 TC
8x19x7 TC 14x24x8 TC 17x35x5 TC 20x45x10 TC
8x20x7 TC 14x25x7 TC 17x35x7 TC 20x45x10 SC
8x22x7 SC 14x28x4 TC 17x35x8 TC 20x47x7 TC
8x22x8 SC 14x28x7 TC 17x40x7 TC 20x47x8 TC
8x22x8 TC 14x28x7 TC 17x40x10 TC 20x47x10 SC
9x22x7 TC 14x28x10 TC 17x40x12 TC 20x47x10 TC
10x19x5 TC 14x29x7 TC 18x28x5 TC 20x50x10 TC
10x19x6 TC 14x30x7 TC 18x30x6 TC 20x52x7 TC
10x19x7 TC 14x30x10 TC 18x30x7 TC 20x52x3 SC
10x20x8 TC 14x35x7 TC 18x30x8 TC 20x52x6 SC
10x22x10 TC 14x35x10 SC 18x30x10 SC 21x35x6 TC
10x22x10 TC 15x24x5 TC 18x30x10 TC 21x35x7 TC
10x22x7 SC 15x24x7 TC 18x35x10 SC 21x35x8 TC
10x22x8 SC 15x25x5 TC 18x35x10 TC 21x38x6 TC
10x22x8 TC 15x26x7 TC 18x35x7 TC 22x30x10 SC
10x25x5 SC 15x28x5 SC 18x40x7 TC 22x32x5 SC
10x25x10 SC 15x28x7 TC 18x40x10 TC 22x32x7 TC
10x26x4 TC 15x28x7 SC 20x30x5 SC 22x35x6 TC
10x26x7 TC 15x28x10 SC 20x30x5 TC 22x35x7 TC
10x26x7 SC 15x30x5 SC 20x30x6 TC 22x35x6.7 TC
10x26x8 TC 15x30x5 TC 20x30x7 SC 22x35x8 TC
10x28x7 TC 15x30x10 TC 20x30x7 SC 22x38x8 TC
10x28x10 TC 15x30x10 SC 20x30x7 TC 22x38x10 SC
11x19x5 TC 15x32x7 TC 20x30x8 TC 22x38x10 TC
12x19x3 SC 15x35x6 TC 20x30x9 TC 22x40x6 TC
12x20x6 SC 15x35x10 TC 20x30x10 SC 22x40x7 TC
12x22x5 TC 15x35x7 TC 20x32x7 TC 22x40x8 TC
12x22x6 TC 15x40x10 SC 20x32x7 TC 22x40x8 TC
12x22x7 TC 16x28x7 TC 20x35x10 TC 22x40x9 TC
12x22x7 SC 16x30x7 TC 20x35x10 TC 22x40x10 SC
12x24x7 SC 16x30x7.5 TC 20x35x5 TC 22x40x10 TC
12x24x7 TC 16x30x10 TC 20x35x7 TC 22x42x7 TC
12x25x5 SC 16x35x7 TC 20x35x7 TC 22x42x10 SC
12x25x7 TC 16x35x10 TC 20x35x8 SC 22x42x11 TC
12x25x10 TC 16x35x10 TC 20x37x7 TC 22x42x12 SC
12x28x7 TC 17x28x5 SC 20x37x7 TC 22x45x10 TC
12x28x8 TC 17x28x7 TC 20x40x10 TC 22x45x10 SC
12x28x10 TC 17x28x7 SC 20x40x7 TC 22x50x10 TC
12x30x10 TC 17x30x7 TC 20x40x7 SC 22x65x8 TC

Certifications

We have passed ROHS, ISO9001:2008 quality system certification.

Raw Materials Warehouse

Mold Manufacturing Equipment

Packaging & Shipping

Size Official size 
Packing A roll of 10, a bundle of 100, and finally put into the packing box
About the packing details for sizes, also according to your requirements.
Delivery Time:  10-20 days after payment
Payment Terms: 100%TT advance payment for LC order
Normally, the goods will be shipping by Sea, by air or by air express according to customer’s request.

Our Service

As a professional manufacturer of rubber sealing products for 35 years, we offer various kinds oil seals, such as TC, TB, TA, SC, SB, SA, VC, VB, VA, KC, KB, KA, DC, and DB, also can customized based on your specific demand; Material including NBR, SILICONE, VITON,HNBR, CR, PTFE, EPDM, etc for your better choice.

FAQ
Q 1.Which Payment way is workable?
A: Irrevocable L/C, Cash, PayPal, Credit card and T/T money transfers.
B: 30% T/T deposit in advance, 70% balance before shipment after presentation of ready cargo.
C: L/C ( Irrevocable LC at sight: Order amount over USD10,000)
Q 2. What is the normal lead time for product orders?
A: Average lead times for prototype / first article are 1-2 weeks, if tooling is involved, lead time for production tooling is 10 days, average production time after sample approval is 2-3 weeks.
Q 3. What is your standard packing?
A: All the goods will be packed by carton box and loaded with pallets. Special packing method can be accepted when needed.
A2: We have various rubber compounds approved by UL, FDA,, KTW, W270, WRAS, ACS, AS4571, EN681, EN549, ROHS and REACH.
Q 4: How to select the raw compound for my application?
A: With years of experience working with a variety of material, we can help select the material that will best suit your needs while keeping material costs in mind.
Q 5: Do you use any international standards for the rubber products?
A: Yes, we mainly use ASTM D2000 standard to define the quality of the rubber materials, tolerances as per ISO3302, ISO2768, etc.
Q 6:Can you supply different color materials?
A: Yes, we can produce custom molded rubber and silicone rubber products in different colors, the color code will be required in case of an order.
 

Calculating the Deflection of a Worm Shaft

In this article, we’ll discuss how to calculate the deflection of a worm gear’s worm shaft. We’ll also discuss the characteristics of a worm gear, including its tooth forces. And we’ll cover the important characteristics of a worm gear. Read on to learn more! Here are some things to consider before purchasing a worm gear. We hope you enjoy learning! After reading this article, you’ll be well-equipped to choose a worm gear to match your needs.
worm shaft

Calculation of worm shaft deflection

The main goal of the calculations is to determine the deflection of a worm. Worms are used to turn gears and mechanical devices. This type of transmission uses a worm. The worm diameter and the number of teeth are inputted into the calculation gradually. Then, a table with proper solutions is shown on the screen. After completing the table, you can then move on to the main calculation. You can change the strength parameters as well.
The maximum worm shaft deflection is calculated using the finite element method (FEM). The model has many parameters, including the size of the elements and boundary conditions. The results from these simulations are compared to the corresponding analytical values to calculate the maximum deflection. The result is a table that displays the maximum worm shaft deflection. The tables can be downloaded below. You can also find more information about the different deflection formulas and their applications.
The calculation method used by DIN EN 10084 is based on the hardened cemented worm of 16MnCr5. Then, you can use DIN EN 10084 (CuSn12Ni2-C-GZ) and DIN EN 1982 (CuAl10Fe5Ne5-C-GZ). Then, you can enter the worm face width, either manually or using the auto-suggest option.
Common methods for the calculation of worm shaft deflection provide a good approximation of deflection but do not account for geometric modifications on the worm. While Norgauer’s 2021 approach addresses these issues, it fails to account for the helical winding of the worm teeth and overestimates the stiffening effect of gearing. More sophisticated approaches are required for the efficient design of thin worm shafts.
Worm gears have a low noise and vibration compared to other types of mechanical devices. However, worm gears are often limited by the amount of wear that occurs on the softer worm wheel. Worm shaft deflection is a significant influencing factor for noise and wear. The calculation method for worm gear deflection is available in ISO/TR 14521, DIN 3996, and AGMA 6022.
The worm gear can be designed with a precise transmission ratio. The calculation involves dividing the transmission ratio between more stages in a gearbox. Power transmission input parameters affect the gearing properties, as well as the material of the worm/gear. To achieve a better efficiency, the worm/gear material should match the conditions that are to be experienced. The worm gear can be a self-locking transmission.
The worm gearbox contains several machine elements. The main contributors to the total power loss are the axial loads and bearing losses on the worm shaft. Hence, different bearing configurations are studied. One type includes locating/non-locating bearing arrangements. The other is tapered roller bearings. The worm gear drives are considered when locating versus non-locating bearings. The analysis of worm gear drives is also an investigation of the X-arrangement and four-point contact bearings.
worm shaft

Influence of tooth forces on bending stiffness of a worm gear

The bending stiffness of a worm gear is dependent on tooth forces. Tooth forces increase as the power density increases, but this also leads to increased worm shaft deflection. The resulting deflection can affect efficiency, wear load capacity, and NVH behavior. Continuous improvements in bronze materials, lubricants, and manufacturing quality have enabled worm gear manufacturers to produce increasingly high power densities.
Standardized calculation methods take into account the supporting effect of the toothing on the worm shaft. However, overhung worm gears are not included in the calculation. In addition, the toothing area is not taken into account unless the shaft is designed next to the worm gear. Similarly, the root diameter is treated as the equivalent bending diameter, but this ignores the supporting effect of the worm toothing.
A generalized formula is provided to estimate the STE contribution to vibratory excitation. The results are applicable to any gear with a meshing pattern. It is recommended that engineers test different meshing methods to obtain more accurate results. One way to test tooth-meshing surfaces is to use a finite element stress and mesh subprogram. This software will measure tooth-bending stresses under dynamic loads.
The effect of tooth-brushing and lubricant on bending stiffness can be achieved by increasing the pressure angle of the worm pair. This can reduce tooth bending stresses in the worm gear. A further method is to add a load-loaded tooth-contact analysis (CCTA). This is also used to analyze mismatched ZC1 worm drive. The results obtained with the technique have been widely applied to various types of gearing.
In this study, we found that the ring gear’s bending stiffness is highly influenced by the teeth. The chamfered root of the ring gear is larger than the slot width. Thus, the ring gear’s bending stiffness varies with its tooth width, which increases with the ring wall thickness. Furthermore, a variation in the ring wall thickness of the worm gear causes a greater deviation from the design specification.
To understand the impact of the teeth on the bending stiffness of a worm gear, it is important to know the root shape. Involute teeth are susceptible to bending stress and can break under extreme conditions. A tooth-breakage analysis can control this by determining the root shape and the bending stiffness. The optimization of the root shape directly on the final gear minimizes the bending stress in the involute teeth.
The influence of tooth forces on the bending stiffness of a worm gear was investigated using the CZPT Spiral Bevel Gear Test Facility. In this study, multiple teeth of a spiral bevel pinion were instrumented with strain gages and tested at speeds ranging from static to 14400 RPM. The tests were performed with power levels as high as 540 kW. The results obtained were compared with the analysis of a three-dimensional finite element model.
worm shaft

Characteristics of worm gears

Worm gears are unique types of gears. They feature a variety of characteristics and applications. This article will examine the characteristics and benefits of worm gears. Then, we’ll examine the common applications of worm gears. Let’s take a look! Before we dive in to worm gears, let’s review their capabilities. Hopefully, you’ll see how versatile these gears are.
A worm gear can achieve massive reduction ratios with little effort. By adding circumference to the wheel, the worm can greatly increase its torque and decrease its speed. Conventional gearsets require multiple reductions to achieve the same reduction ratio. Worm gears have fewer moving parts, so there are fewer places for failure. However, they can’t reverse the direction of power. This is because the friction between the worm and wheel makes it impossible to move the worm backwards.
Worm gears are widely used in elevators, hoists, and lifts. They are particularly useful in applications where stopping speed is critical. They can be incorporated with smaller brakes to ensure safety, but shouldn’t be relied upon as a primary braking system. Generally, they are self-locking, so they are a good choice for many applications. They also have many benefits, including increased efficiency and safety.
Worm gears are designed to achieve a specific reduction ratio. They are typically arranged between the input and output shafts of a motor and a load. The 2 shafts are often positioned at an angle that ensures proper alignment. Worm gear gears have a center spacing of a frame size. The center spacing of the gear and worm shaft determines the axial pitch. For instance, if the gearsets are set at a radial distance, a smaller outer diameter is necessary.
Worm gears’ sliding contact reduces efficiency. But it also ensures quiet operation. The sliding action limits the efficiency of worm gears to 30% to 50%. A few techniques are introduced herein to minimize friction and to produce good entrance and exit gaps. You’ll soon see why they’re such a versatile choice for your needs! So, if you’re considering purchasing a worm gear, make sure you read this article to learn more about its characteristics!
An embodiment of a worm gear is described in FIGS. 19 and 20. An alternate embodiment of the system uses a single motor and a single worm 153. The worm 153 turns a gear which drives an arm 152. The arm 152, in turn, moves the lens/mirr assembly 10 by varying the elevation angle. The motor control unit 114 then tracks the elevation angle of the lens/mirr assembly 10 in relation to the reference position.
The worm wheel and worm are both made of metal. However, the brass worm and wheel are made of brass, which is a yellow metal. Their lubricant selections are more flexible, but they’re limited by additive restrictions due to their yellow metal. Plastic on metal worm gears are generally found in light load applications. The lubricant used depends on the type of plastic, as many types of plastics react to hydrocarbons found in regular lubricant. For this reason, you need a non-reactive lubricant.

China supplier High Temperature Oil Resistant Fluorine Rubber Skeleton Seal Seals   with Great qualityChina supplier High Temperature Oil Resistant Fluorine Rubber Skeleton Seal Seals   with Great quality