China manufacturer China Manufacturer of Trailer Parts Wheel Hub a wheel and axle

Product Description

Product Description

 

 

Product Parameters

 

MODEL DIAMETER OF MOUNTING HOLE(A) NO. DIAMETER OF MOUNTING HOLE(A) SIZE BOLT DISTRIBUTION DIAMETER BEARING POSITION OIL SEAL POSITION STOP POSITION INNER SHAFT DISTANCE OF RIM TOTAL HEIGHT(F) FLANGE DIAMETER REMARKS
ZYQC-DT-LG 10 22 335 152.4   152 152.8 176 45 165 383 SINGLE WHEEL HUB
ZY-10TA002 10 23 225 152.4 152.4 152.8 172 32 202 280 10T
ZY-13TA002 10 22 335 152.4 152.4 152.8 280 45 230 383 13T
ZY-16TA002 10 22 335 157    152.4 160 280 39 230 383 16T
ZY-20TA002 10 22 335 200    152.4 200.4 280 16 242 383 20T
ZY-25TA002 10 22 335 200     200 200.4 280 25 257 383 25T
ZY-16TJ001 10 22 335 200.2 150.2 200.2 280 23 286 380 16T
ZY-WZ16T 10 23 225 35      170 152 196 20 216 276 16T
ZY-6TA002 10 20 222 125    110 130 160 41 192 260 6T
ZY-DS01 10 23 335 152.4 152.4 152.8 280 46 230 383 DISC BRAKE HUB

Workshop

 

Certifications

 

Company Profile

 

Packaging & Shipping

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Services
Warranty: One Year
Type: Wheel
Certification: ISO/TS16949, CCC, ISO
Loading Weight: Customer Demand
ABS: Customer Demand
Samples:
US$ 45/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle hub

Are there differences between front and rear axle hubs in terms of design and function?

Yes, there are differences between front and rear axle hubs in terms of design and function. Here’s a detailed explanation of these differences:

1. Design:

The design of front and rear axle hubs can vary based on the specific requirements of each axle position.

Front Axle Hubs: Front axle hubs are typically more complex in design compared to rear axle hubs. This is because front axle hubs are often responsible for connecting the wheels to the steering system and accommodating the front-wheel drive components. Front axle hubs may have provisions for attaching CV (constant velocity) joints, which are necessary for transmitting power from the engine to the front wheels in front-wheel drive or all-wheel drive vehicles. The design of front axle hubs may also incorporate features for connecting the brake rotor, allowing for the integration of the braking system.

Rear Axle Hubs: Rear axle hubs generally have a simpler design compared to front axle hubs. They are primarily responsible for connecting the wheels to the rear axle shafts and supporting the wheel bearings. Rear axle hubs may not require the same level of complexity as front axle hubs since they do not need to accommodate steering components or transmit power from the engine. However, rear axle hubs still play a critical role in supporting the weight of the vehicle, transmitting driving forces, and integrating with the brake system.

2. Function:

The function of front and rear axle hubs differs based on the specific demands placed on each axle position.

Front Axle Hubs: Front axle hubs have the following primary functions:

  • Connect the wheel to the steering system, allowing for controlled steering and maneuverability.
  • Support the wheel bearings to facilitate smooth wheel rotation and weight distribution.
  • Integrate with the front-wheel drive components, such as CV joints, to transmit power from the engine to the front wheels.
  • Provide a mounting point for the brake rotor or drum, allowing for the integration of the braking system.

Rear Axle Hubs: Rear axle hubs have the following primary functions:

  • Connect the wheel to the rear axle shaft, facilitating power transmission and driving forces.
  • Support the wheel bearings to enable smooth wheel rotation and weight distribution.
  • Integrate with the brake system, providing a mounting point for the brake rotor or drum for braking performance.

3. Load Distribution:

Front and rear axle hubs also differ in terms of load distribution.

Front Axle Hubs: Front axle hubs bear the weight of the engine, transmission, and other front-end components. They also handle a significant portion of the vehicle’s braking forces during deceleration. As a result, front axle hubs need to be designed to handle higher loads and provide sufficient strength and durability.

Rear Axle Hubs: Rear axle hubs primarily bear the weight of the vehicle’s rear end and support the differential and rear axle shafts. The braking forces on the rear axle hubs are typically lower compared to the front axle hubs. However, they still need to be robust enough to handle the forces generated during acceleration, deceleration, and cornering.

In summary, there are differences between front and rear axle hubs in terms of design and function. Front axle hubs are typically more complex and accommodate steering components and front-wheel drive systems, while rear axle hubs have a simpler design focused on supporting the rear axle and integrating with the brake system. Understanding these differences is important for proper maintenance and repair of the axle hubs in a vehicle.

axle hub

How often should axle hubs be inspected and replaced as part of routine vehicle maintenance?

Regular inspection and maintenance of axle hubs are crucial for ensuring the safe and efficient operation of a vehicle. The frequency of inspection and replacement may vary depending on several factors, including the vehicle’s make and model, driving conditions, and manufacturer’s recommendations. Here are some guidelines to consider:

  • Manufacturer’s recommendations: The first and most reliable source of information regarding the inspection and replacement intervals for axle hubs is the vehicle manufacturer’s recommendations. These can usually be found in the owner’s manual or the manufacturer’s maintenance schedule. It is essential to follow these guidelines as they are specific to your particular vehicle.
  • Driving conditions: If your vehicle is subjected to severe driving conditions, such as frequent towing, off-road use, or driving in extreme temperatures, the axle hubs may experience increased stress and wear. In such cases, more frequent inspections and maintenance may be necessary.
  • Visual inspection: It is a good practice to visually inspect the axle hubs during routine maintenance or when performing other maintenance tasks, such as changing the brakes or rotating the tires. Look for any signs of damage, such as leaks, excessive play, or worn-out components. If any abnormalities are detected, further inspection or replacement may be required.
  • Wheel bearing maintenance: The axle hubs house the wheel bearings, which are critical for the smooth rotation of the wheels. Some vehicles have serviceable wheel bearings that require periodic maintenance, such as cleaning and repacking with fresh grease. If your vehicle has serviceable wheel bearings, refer to the manufacturer’s recommendations for the appropriate maintenance intervals.
  • Unusual noises or vibrations: If you notice any unusual noises, such as grinding, humming, or clicking sounds coming from the wheels, or if you experience vibrations while driving, it could be an indication of a problem with the axle hubs. In such cases, immediate inspection and necessary repairs or replacement should be performed.

It’s important to note that the intervals for inspecting and replacing axle hubs can vary significantly between different vehicles. Therefore, it is recommended to consult the vehicle manufacturer’s recommendations to determine the specific maintenance schedule for your vehicle. Additionally, if you are unsure or suspect any issues with the axle hubs, it is advisable to have a qualified mechanic or automotive technician inspect and assess the condition of the axle hubs.

In summary, the frequency of inspecting and replacing axle hubs as part of routine vehicle maintenance depends on factors such as the manufacturer’s recommendations, driving conditions, visual inspections, wheel bearing maintenance requirements, and the presence of any unusual noises or vibrations. Following the manufacturer’s guidelines and promptly addressing any abnormalities will help ensure the proper functioning and longevity of the axle hubs.

axle hub

How do changes in wheel offset affect the angles and performance of axle hubs?

Changes in wheel offset can have a significant impact on the angles and performance of axle hubs. Here’s a detailed explanation:

Wheel offset refers to the distance between the centerline of the wheel and the mounting surface. It determines how far the wheel and tire assembly will be positioned in relation to the axle hub. There are three types of wheel offsets: positive offset, zero offset, and negative offset.

Here’s how changes in wheel offset can affect the angles and performance of axle hubs:

  • Camber Angle: Camber angle refers to the inward or outward tilt of the wheel when viewed from the front of the vehicle. Changes in wheel offset can impact the camber angle. Increasing positive offset or reducing negative offset typically results in more positive camber, while increasing negative offset or reducing positive offset leads to more negative camber. Improper camber angle can cause uneven tire wear, reduced traction, and handling issues.
  • Track Width: Wheel offset affects the track width, which is the distance between the centerlines of the left and right wheels. Wider track width can improve stability and cornering performance. Increasing positive offset or reducing negative offset generally widens the track width, while increasing negative offset or reducing positive offset narrows it.
  • Steering Geometry: Changes in wheel offset also impact the steering geometry of the vehicle. Altering the offset can affect the scrub radius, which is the distance between the tire contact patch and the steering axis. Changes in scrub radius can influence steering effort, feedback, and stability. It’s important to maintain the appropriate scrub radius for optimal handling and performance.
  • Wheel Bearing Load: Wheel offset affects the load applied to the wheel bearings. Increasing positive offset or reducing negative offset generally increases the load on the inner wheel bearing, while increasing negative offset or reducing positive offset increases the load on the outer wheel bearing. Proper wheel bearing load is crucial for their longevity and performance.
  • Clearance and Interference: Changes in wheel offset can also impact the clearance between the wheel and suspension components or bodywork. Insufficient clearance due to excessive positive offset or inadequate clearance due to excessive negative offset can lead to rubbing, interference, or potential damage to the axle hub, suspension parts, or bodywork.

It’s important to note that any changes in wheel offset should be done within the manufacturer’s recommended specifications or in consultation with knowledgeable professionals. Deviating from the recommended wheel offset can lead to adverse effects on the axle hub angles and performance, as well as other aspects of the vehicle’s handling and safety.

When modifying wheel offset, it is crucial to consider the overall impact on the vehicle’s suspension geometry, clearance, and alignment. It may be necessary to make corresponding adjustments to maintain proper alignment angles, such as camber, toe, and caster, to ensure optimal tire wear, handling, and performance.

In summary, changes in wheel offset can have a significant impact on the angles and performance of axle hubs. They can affect camber angles, track width, steering geometry, wheel bearing load, and clearance. It is important to adhere to manufacturer’s specifications and consult with knowledgeable professionals when considering changes in wheel offset to ensure proper alignment, optimal performance, and safe operation of the vehicle.

China manufacturer China Manufacturer of Trailer Parts Wheel Hub   a wheel and axleChina manufacturer China Manufacturer of Trailer Parts Wheel Hub   a wheel and axle
editor by CX 2024-02-28